The Feynman-kac Formula in the Operator Setting
نویسندگان
چکیده
منابع مشابه
A Feynman-Kac Formula for Unbounded Semigroups
We prove a Feynman-Kac formula for Schrödinger operators with potentials V (x) that obey (for all ε > 0) V (x) ≥ −ε|x| − Cε. Even though e is an unbounded operator, any φ, ψ ∈ L with compact support lie in D(e) and 〈φ, eψ〉 is given by a Feynman-Kac formula.
متن کاملApplication of semi-analytic method to compute the moments for solution of logistic model
The population growth, is increase in the number of individuals in population and it depends on some random environment effects. There are several different mathematical models for population growth. These models are suitable tool to predict future population growth. One of these models is logistic model. In this paper, by using Feynman-Kac formula, the Adomian decomposition method is applied to ...
متن کاملWiener Integration for Quantum Systems: A Unified Approach to the Feynman-Kac formula
A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...
متن کاملua nt - p h / 97 03 03 1 v 1 1 8 M ar 1 99 7 Wiener Integration for Quantum Systems : A Unified Approach to the Feynman - Kac formula ∗
A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...
متن کاملKac’s moment formula and the Feynman–Kac formula for additive functionals of a Markov process
Mark Kac introduced a method for calculating the distribution of the integral Av= ∫ T 0 v(Xt) dt for a function v of a Markov process (Xt; t¿0) and a suitable random time T , which yields the Feynman–Kac formula for the moment-generating function of Av. We review Kac’s method, with emphasis on an aspect often overlooked. This is Kac’s formula for moments of Av, which may be stated as follows. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007